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DATA SELECTION FOR FAST PROJECTION TECHNIQUES:
A COMPARATIVE STUDY OF DIRECTION FINDING PERFORMANCE

by

Myléne Toulgoat and Ross M. Turner
ABSTRACT

This report describes simulation studies of fast projection techniques for direction finding
of jammer signals. These techniques are based on a data selection criterion applied directly to
the data vectors obtained at the output of an antenna array. The selected data vectors are used
in fast projection algorithms to estimate the jamming signal subspace and then to calculate the
directional spectrum. Three such algorithms are described ranging from the fastest but least
effective to the most computationally demanding but most effective. These algorithms provide
a better trade-off of performance versus computational load than has heretofore been available.
Relative performance is compared with that of the MUSIC technique for test cases which
evaluate the minimum resolution threshold achievable and the effect of the jammer strength
relative to the receiver noise.

RESUME

Ce rapport est une étude, basée sur des simulations, de la performance relative des
techniques de projection rapides pour trouver la direction de brouilleurs. Ces algorithmes
utilisent un critere pour la sélection de bons vecteurs de données 2 la sortie d’une antenne
réseau. Les vecteurs sélectionnés sont utilisés dans des algorithmes de projection rapides afin
" d’estimer le sous-espace des brouilleurs et ainsi calculer 'estimateur spectral. On décrit trois
algorithmes le premier étant plus efficace du point de vue du nombre de calculs mais moins
performant du point de vue du pouvoir de résolution, le dernier étant moins rapide mais plus
performant. Ces algorithmes donnent un meilleur compromis entre le rendement et la charge de
calculs que les algorithmes connus jusqu’a présent. On a comparé le rendement de ces trois
techniques avec celui de la technique MUSIC pour deux scénarios différents qui évaluent le
pouvoir de résolution et ’effet de la puissance des brouilleurs.
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EXECUTIVE SUMMARY

Accurate angular location and resolution of jamming sources is important for military
sensor systems such as ESM and radar. This report describes three techniques for processing the
outputs of antenna arrays to produce improved performance. Specifically, this report describes
and evaluates computationally efficient algorithms for direction finding; these reduce the
requirement for high speed computation and hence the cost of implementation.

The algorithms to be described and evaluated are based on projection techniques; the
jamming signal subspace is estimated from the data vectors obtained from the antenna array
elements. The jamming signal subspace is then used to calculate the directional spectrum, which
basically consists of calculating the power of the projection of the search vector into the subspace
orthogonal to the jamming signal subspace. As the search vector gets closer to the jammer
direction, the power of the projected vector decreases. By taking the inverse of the projected
power we obtain a directional spectrum with the peak positions reflecting the jammer directions.

Three algorithms, all based on data selection criteria followed by Gram-Schmidt
orthogonalization, are described and evaluated. The algorithms are named as follows: (1) DVO
for data vector orthogonalization, (2) DVSO for data vector selection and orthogonalization, (3)
DVSO-COVAR for repeated applications of DVSO followed by a combining of the selected data
vectors into a covariance matrix which in turn is followed by a final application of DVSO to the
columns of the covariance matrix.

The above three algorithms are evaluated by means of simulations and compared with
the standard MUSIC technique (MUSIC stands for Multiple Signal Classification). The latter is
very computationally demanding. In terms of performance versus computational load, all three
techniques compare favourably with the MUSIC technique. The three techniques trade off
performance against computational load, DVO being the fastest in terms of computations but
providing poorest resolution capability while DVSO-COVAR provides best resolution capability
but at a cost of a considerable computational load.
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DATA SELECTION FOR FAST PROJECTION TECHNIQUES:
A COMPARATIVE STUDY OF DIRECTION FINDING PERFORMANCE

1.0 INTRODUCTION

Modern signal processing techniques provide the capability for very high-resolution
determination of angles-of-arrival. While the performance of these techniques is very good, they
have very high computational loads, preciuding their use in many circumstances. Projection
techniques based on eigenanalysis form the basis of the best performing and most poputar high-
resolution array signal-processing techniques. Such techniques have been used for angle-of-
arrival estimation, for example the MUSIC technique of Schmidt [1] and the equivalent
formulations of Bienvenu [2], as well as for adaptive antenna nulling of jammers [3,4]. Fast
projection techniques, based on direct orthogonalization of the data vectors, avoid time
consuming eigenanalysis but with-some necessary loss of performance [5,6,7,8]. Toulgoat and
Turner [9,10] have introduced aspects of data-vector selection to obtain a better trade-off
between performance and speed for adaptive nulling of jamming signals.

This report is an evaluation of the fast projection methods of Toulgoat and Turner as
applied to high-resolution direction finding similar to the evaluation carried out for adaptive
nulling in [10]. As in [10], we consider a family of techniques starting with the fastest but
poorest performing and progressing to the slowest but best performing. We consider three
techniques: DVO for Data Vector Orthogonalization; DVSO for Data Vector Selection and
Orthogonalization; and DVSO-COVAR, where DVSO is first used, the selected vectors are then
formed into a covariance matrix, and DVSO is then applied to the columns of the covariance
matrix. The data vectors selection technique used in DVSO-COVAR is similar to a technique
of Reilly and Law [11]. However, [11] applies the selection process to the permutation and
selection of columns of a covariance matrix. In contrast, we apply the data selection prior to the
calculation of the covariance matrix in order to choose the data vectors used in the formation
of the covariance matrix and then apply a procedure which is equivalent to that of [11] for
selecting a subset of the columns vectors of the covariance matrix. The major contributions of
this report are the new algorithms and the evaluation of their performance as a function of
computational load for direction finding.

The basis of the evaluation is the resolution performance achieved versus the
computational load as determined using Monte-Carlo simulations. In order to have a consistent
measure of resolution performance, we define two signals as being resolved when the estimator
has two peaks indicating the two signals near the true signal positions and where there is a dip
of at least 3 dB between the peaks. The minimum resolution threshold is then the angular
separation between the signals when this criterion is just satisfied. The evaluation is carried out
for two test cases: T, where the resolution threshold is determined for fixed and high signal-to-
noise ratio; and T, where the effect of different signal-to-noise ratios on the directional spectrum
is examined. The three techniques are compared among themselves as to their performance
versus computational loading. The final comparison is then made with the MUSIC algorithm.




2.0 SIGNAL MODEL

In this report, we consider only a uniform linear array with equally spaced elements.
However, the techniques developed are also applicable to arbitrarily shaped arrays of non-
uniformly spaced elements. The signals of interest comprise jamming interference received by
the radar system. Such signal sources can be considered to be completely uncorrelated. The
objective is to resolve these sources and to accurately determine their directions.

Radar systems are usually narrow band; this means that the received signal wave front -
has nearly perfect Spatial correlation over the face of the array, provided that the time taken to
cross the array is small compared with the reciprocal of the system bandwidth. The n® data
vector at time t, is expressed as :

L
X, = Eji(tn)ai +a,
i=1

where L is the number of signals, n, is a receiver-noise vector with mutually independent
components and power, E{|n,{?} = K ¢, with K the number of array elements. The quantity
ji(ty is a complex Gaussian random variable representing the i® signal amplitude at time t,, and
a, is a deterministic vector representing the direction of arrival of the i*® signal defined as

a, = [1,exp(j2ndsin(6;) /A),...,exp(j2rd(K-1)sin6,;/A) 17

Here d is the inter-element spacing, and 6, is the direction of arrival of the i® signal. The sample
vectors or "snapshots" are taken at time intervals such that j(t)) and j(t,,) are completely
independent.

3.0 PERFORMANCE EVALUATION
3.1 MONTE-CARLO SIMULATIONS

Monte-Carlo simulations are used to evaluate the performance of the various techniques.
One hundred independent trials are carried out for each parameter setting under test with
performance measures averaged over these trials. The jamming signals are generated as samples
of a zero-mean complex Gaussian variate having perfect spatial correlation over the array and
zero temporal correlation from one data vector to the next. This gives rise to a signal amplitude
that is Rayleigh distributed. Receiver noise is also generated as samples of a zero-mean complex
Gaussian variate but having zero spatial correlation over the array and zero temporal correlation

from one data vector to the next. The receiver noise power at the element level is set at ¢* =
104,

The results are presented for ten-element and forty-element arrays of omnidirectional
elements with an element spacing of one half wavelength.




3.2 PERFORMANCE MEASURES
3.2.1 DIRECTIONAL SPECTRUM

The directional spectrum F(f) used for angle-of-arrival estimation is given as

F(8) = 1 1
© 8(0)4p 8(0) ()

where P is the projection matrix

vh (2)

s(8) is defined as

— _1' j2‘ud : j2“ (K"l)d : T
8(0) = R[l,exp(-———l 51116),...,exp(——-—-l sin@) ]

d is the spacing between array elements, A is the signal wavelength and 0 is the angle searched.

The entire space is searched, using low-resolution Fourier beamforming prior to the
application of high-resolution spectral estimation to localize the regions of interest. This
procedure is used to reduce the number of directions (denoted by n,) that are investigated. The
present state of the art permits a resolution of about '4 of a beamwidth. The minimum number
of directions to be searched is therefore n,=4 directions within a beamwidth. In practice
however, the number may not be large enough to resolve the peak positions. In this report, we
consider n,=23. This value is larger than what might be needed in practice; however, such a
large value of n, suits our purpose: to show that the fast projection algorithms can be used for
direction finding and to compare their resolution with that of the MUSIC method.

3.2.2 MINIMUM RESOLUTION THRESHOLD

The performance measure used is the minimum resolution threshold, Aé,,, for two
uncorrelated stochastic signals having the same Signal-to-Noise Ratio (SNR). Here the term SNR
indicates the ratio of the power of the signal to the power of the receiver noise measured at the
element receiver output. In each simulation trial, the two sources were considered resolved if
they met the two following requirements:




a) The spectral output of the algorithm under test had two peaks at or near the true source
locations. An error of +(6,-6,)/10 in location was allowed.

b) The peaks at 4, and 6, were more than 3 dB above the value of F(f) at §=0, + A6/2,
where i=1,2 and A0 =4,-0,.

This measure of angular resolution is given in beamwidths (BW). One beamwidth is
defined as A/D where A is the signal ‘wavelength and D is the antenna aperture.

3.2.3 ERROR IN THE ESTIMATION OF DIRECTIONS

Since the data vectors contain receiver noise in addition to signals, the estimate of the
signal subspace is not perfect. This causes error in the determination of signals directions. As
seen in 3.2.2, an error of +A6/10 was allowed in the calculation of the minimum resolution
threshold. To determine this error more precisely, we calculate the value of F(6) at intervals of
A8/100 to obtain a precision of 1% of A4. If, for example, we observe a peak at §, + 346/100,
we conclude that the position is off by 2.5 to 3.5% of the angle separation, A#.

3.3 TEST CASES

We have specified two test cases, T, and T,, which are designed to determine the
minimum threshold resolution, Ad,.,, achieved by the various techniques and to test the effect
of the signal strength on the directional spectrum, respectively.

3.3.1 TEST CASE T,

Here we have specified the Signal-to-Noise Ratio, SNR, at the receiving element output
to be 40 dB. The number of signals is designated as L=2. The first signal is set at §, =20° while
the second signal direction is at 6,=0,+ Af. The separation Af is then reduced until the threshold
resolution, Aé,,, is reached.

3.3.2 TEST CASE T,

Here we have defined two equi-powered signals at §,=20° and 6,=30°. We consider
four values of SNR of 10, 20, 30 and 40 dB as measured at the element level. This test case is
used to examine the performance of the various estimators as a function of SNR.




4.0 DATA VECTOR ORTHOGONALIZATION

The Data Vector Orthogonalization (DVO) technique is an efficient method for
constructing a basis for the (jamming) signal subspace and computing the corresponding
directional spectrum F(f). A set of M basis vectars, {v_,}, is generated directly from a set of
sample vectors, {y,: m=1 to M}, selected from a larger group of N data vectors, {x,: n=1 to
N}, using the Gram-Schmidt (GS) orthonormalization method. Two thresholds are included in
the procedure: an internal threshold A that rejects data vectors which provide little additional
information about the jamming signal subspace and an external threshold, A, which forces the
continued collection of data vectors and provides a termination criterion for the algorithm. The
use of an external threshold in this manner was proposed by Nickel [7].

The m® basis vector v, is generated from the n® data vector x, using

m-1
u,=x, - E (vgxn) v,

J-1

We then compare the squared magnitude of u,, to an internal threshold given by A=2Ko?. The
objective is to eliminate data vectors whose information content is too low. If Ju,:? > A, then
u,, is accepted and a new basis vector, v,,, is generated as v, = u,/|u,!. If u, is not accepted,
the procedure is started again with a new data vector x,.

Following the generation of v,, a statistic T is calculated as in [7]

2

7o det(¥y =
lyp
i-1

and tested against an external threshold, A;. Matrix Y is constructed with the m data vectors
selected from {x,}:

Y= [yll‘yzc e :}’,,,]

When T ° A,, the signal subspace has been sufficiently well estimated and the procedure is
stopped. Otherwise, the procedure continues with a new data vector, x,. The accuracy of the
estimation of the signal subspace depends on the choice of A;. Indeed, there is a trade-off
between the accuracy of the estimate and the computational load depending on the choice of Ay.
The number of data vectors, N, that are examined and the number, M, selected are random
variables for a given threshold value, A;. The dependence of the computational load on N and
M will be evaluated by means of Monte-Carlo simulations.




4.1 COMPUTATIONAL LOAD

The computational count comprises two terms: the first term, C,, is associated with the
calculation of the basis vectors {v,}; the second term, C,, represents the number of complex
multiplications required for the calculation of the directional spectrum F(6).

In the DVO technique, we assume that N data vectors are used to compute M
orthonormal vectors spanning the signal subspace. An upper bound to the number of complex
multiplications required is then

Covo = C, + C,,

where

(N-1) (K+1)

Cp, = KN? - 0.5KN + 0.5KM + >

and
C,. = n, M(K+0.5) 3)

where n, is the number of angles searched i.e. the number of points at which the directional
spectrum, F(0), is evaluated.

4.2 COMPUTER SIMULATIONS

We first determine the minimum resolution threshold, A6, of the DVQ algorithm for
arrays of 10 and 40 elements using test case T,. Figure 1 shows the resolution threshold, A6,
versus the external threshold A;. As A; increases, the accuracy of the estimate of the signal
subspace decreases and therefore Af,,, increases. The errors in the estimation of the directions
of the sources vary between 0% and 6.5% of A (A@=A0,, in this case) for both sources and
both arrays.

Next, we analyze the effect of the signal strength. Figure 2 shows the directional
spectrum F(6) versus @ for a threshold a; = 0.5 using test case T,. The peak heights are
proportional to the relative SNR for each signal. The error in estimating the directions is less
than 0.5% of A6 for SNR of 20, 30 and 40 dB and is less than 1.5% of A6 for SNR=10 dB.
Further computer simulations showed that as the signal strength increases, the minimum
resolution threshold, Ad,,,, achieved, becomes lower. As an example, two sources at 8, = 20°
and 8, = 25 ° are resolved with a threshold A;=0.5 for SNR=40 dB but cannot be resolved
even with a threshold A;=1x10"? if SNR=10 dB. In the latter case, it was not possible to find
an estimate of the signal subspace sufficiently accurate. As expected, the accuracy of the
estimate of the signal directions increases with SNR.
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5.0 DVSO TECHNIQUE

The DVSO technique is based on a selection of the best M vectors from a larger group
of N vectors which are sampled when only the jamming signals are present and stored before
the process begins. The selected M vectors are best in the sense that they yield the most accurate
estimate of the signal subspace as compared with any other set of M vectors selected from the
larger set of N. In the algorithm for estimating the signal subspace, we use the following
notation: {x,} comprises the set of N sample vectors, {u,} denotes the M best sample vectors

chosen from the {x,}, and {v,} denotes the orthonormal basis formed from the {u,} by the GS
method.

The data selection is integrated with the GS orthonormalization method. The data vector
chosen has the largest projected amplitude in the subspace orthogonal to the previously selected
(m-1) basis vectors {v,, ..., v,,}. The squared magnitude of this projection is

ex=p,_,xP n-1,...,N

where P, is the projection matrix determined from the basis {v,, ..., v,;} as in equation (2).
The iterations are initiated with P,=I, the identity matrix.




The m™ basis vector v,, is generated from the n® data vector {x,} using

m-1
u, = x, - Y (Vix,)v;
J=1

We then compare the squared magnitude of u,, to a threshold given by A=2Kd?. If |u,{? > A
then v,=u_/|u,! and the process starts again with another data vector. Otherwise, the algorithm
terminates with an estimate of the signal subspace given by {v,,...,v\} where M equals the final
value of m in the iteration minus 1. The angle estimator is then obtained using equation (1).

5.1 COMPUTATIONAL COUNT
Although the concept of the projection matrix is central to the derivation of the technique,
it is never explicitly calculated. It is computationally more efficient to work directly with the
basis vectors. The projection matrix is only required in the selection of the data vector. We use
the following properties of projection matrices to simplify the expression for ¢,™:
Pm-lH = Pm—l
and

PoiPay = Py

We can now write

m-1
€n = xP . x, = xP - Y WxpP
k-1

We obtain the iteration for ¢, as
€ = €n " - |v",,,_le
With those simplifications, the computational load for the DVSO technique is given by:

Covso = C, + C,,
where

C, = X (0.5 + 0.5N + 2M +MN + M? + 0.5 MN

and C,, is given by equation (3)




5.2 COMPUTER SIMULATIONS

We first determine the minimum resolution threshold, Af,,, for the DVSO technique
using test case T,. Figure 3 shows Af,, versus N for arrays of 10 and 40 elements. As N
increases, the resolution threshold decreases down to a limit which is around 0.12 BW for
K=10 and 0.13 BW for K=40. Increasing N would slightly lower the minimum resolution
threshold. N has been limited to 20 in the results presented here. It is observed that as K
increases, the resolution in BW increases by a small amount. We then consider the error on the
positions of the directions for the results of Figure 3. The error in estimating the source
directions lies between 1.5% to 4 5% of Af for #, and 2.5% to 5.5% of A8 for 6, for both
arrays, for Af near the resolution limit, Al

We next analyze the effect of signal strength on the directional spectrum. Figure 4 shows
the directional spectrum F(6) versus 8 using test case T, with N=5 for SNR=10, 20, 30, 40 dB.
The peaks of the function reflect the signal strength. Other computer simulations (results not
given) showed that the height of the peaks is fairly insensitive to N, provided N is high enough
to resolve the sources. It is also observed that the resolution threshold depends on the signal
strength. As an example, for 6,=20° and 6,=25° we cannot find an N<20 for which the
sources are resolved for SNR=10 dB but they are resolved with N=3 for SNR=40 dB.

The error in estimating the signal directions has been determined for test case T,.
The results showed that the error is less than 1.5% of A for all SNR’s. We observe from test
cases T, and T, that, as the angle separation, Af, increases, the error in the signal direction
decreases.

6.0 COMPARISON OF DVO AND DVYSO

Both the DVO and DVSO methods combine GS orthogonalization with a data selection
process for the computation of the directional spectrum F(6). In the DVO method, the data
selection process consists of eliminating those data vectors which provide little additional
information about the jamming signal subspace while continuing to take new sample vectors until
a second external threshold criterion is satisfied. The data selection is carried out after the GS
orthogonalization. In the DVSO technique, the data selection process consists of choosing the
data vector which has the largest projected amplitude into the subspace orthogonal to the
previously selected (m-1) basis vectors {v,, ..., v, ,}. The data selection process of the DVO
method is not as efficient as that of the DVSO method. In the DVO method, we eliminate data
vectors that are not good enough while in DVSO we select the best data vectors. Therefore, the
DVSO method gives a more accurate estimate of the signal subspace than does the DVO
technique; the data selection criterion, however, requires more computations.

The curves of performance versus number of complex multiplications are obtained as
follows: (1) for DVO we decrease the threshold, A,, which increases the number of calculations
but gives better performance; (2) for DVSO we increase N, increasing the computational load
and improving the resolution.
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Figure 5 shows the minimum resolution threshold, A6, versus complex multiplications
for both DVO and DVSO techniques for an array of 10 elements. Two regions of operation are
observed. Below Af,,,=0.152 BW, the DVSO method performs best in the sense that it requires
less computations to provide a given Af,;,. Above Af,,=0.152 BW, the DVO method performs
best. These results are obtained with ny=23 directions. Figure 6 gives the same performance for
an array of 40 elements. We notice that there is no difference between DVO and DVSO for this
array. Since the computational load is composed of two terms where only one term depends on
the parameter n,, it is interesting to plot A@ against the two terms separately. Figures 7 and 8
shows Al versus C, and C,., respectively, for an array of 40 elements. From Figure 7, we see
that the calculation of the basis by DVSO is more computationally intensive than that of the
DVO method. Figure 8 shows that the search operation is less computationally intensive for
DVSO when Af,,, is less than 0.17 BW while requiring about the same number of computations
as DVO for Af,,, greater than 0.17 BW. Considering both terms of the computational load, the
DVSO technique is advantageous for small values of Af,;, and small arrays while both performs
approximately the same as DVO for larger Af and larger arrays.
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7.0 DVSO FOR ESTIMATING THE COVARIANCE MATRIX

In this technique we employ the DVSO method twice. The first step is to subdivide a set
of QN data vectors into Q groups of N vectors. DVSO is then applied to select the best M, data
vectors out of the i* group, i=1 to Q. This is repeated Q times to give

)
M, = 2 M,
i=-1
data vectors which are used to calculate the covariance matrix R:
1 &
R = “"E x.x;
My

We are thus able to obtain an estimate of the covariance matrix using fewer but higher
quality data vectors than in the conventional approach.

The final step applies the DVSO method to the columns of the covariance matrix to find
an orthonormal basis and calculate a directional spectrum. This method is called DVSO-
COVAR.

The data vector selection technique used is similar to a technique of Reilly and Law [11].
However, [11] applies the selection process to the permutation and selection of columns of a
covariance matrix. In contrast we apply the criterion to the data vectors themselves thus reducing
the number of data vectors used for computing the covariance matrix and therefore reducing the
computational load. When we calculate the covariance matrix as in the DVSO-COVAR
algorithm, the data vectors are subjected to the selection process before being combined in the
covariance matrix. We then apply a procedure which is equivalent to that of [11] for selecting
a subset of the columns vectors which are used to generate a basis for the signal space by means
of the Gram-Schmidt process.

The number of computations required by the DVSO-COV AR technique is data-dependent;
the mean number of calculations is estimated by Monte-Carlo simulations. For a single trial
evaluation of the directional spectrum, the number of multiplications is

M. (K(K+1))

Qo
Y oM N K) +
i=1 2

+ Co(H,N,K) + C,,(H,K,n,)

where C, is the number of computations for the calculation of the basis by the DVSO technique
and C,, is the number of computations for the evaluation of the directional spectrum; H is the
number of basis vectors used to calculate the directional spectrum.
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7.1 COMPUTER SIMULATIONS

We first analyze the effect of varying the parameters Q and N on the minimum resolution
threshold Af,,,. Figure 9 shows the minimum resolution threshold, Af,,,, versus N for an array
of 10 elements with Q=1,2,3 and 4 using test case T,. As for DVSO, increasing N lowers the
minimum resolution threshold. This threshold is also lowered by increasing Q. For Q=1, the
minimum resolution threshold is the same as that obtained for the DVSO technique while for
Q=4, Af,, can be as low as 0.09 BW. As in the DVSO technique, N is limited to 20. Figure
10 shows the minimum resolution threshold, Af,;,, versus complex multiplications. We see that
increasing Q decreases the minimum resolution threshold achieved but for a given Af,,, the
computational load is about the same for the different values of Q. This can be explained by the
fact that as Q increases, we need a lower N to achieve the same resolution. Therefore for small
values of Al there is no difference in the computational load. The error in estimating the
directions of the sources for the results of Figure 10 (test case T,) lies between 0.5% to 6.5%
of Af for 6, and 1.5% to 5.5% of Af for 6, (here AG=A8,,).

Figure 11 shows the minimum resolution threshold, A8, versus Q for different values
of N using test case T, for an array of 10 elements. Increasing N for a given Q lowers the
minimum resolution threshold. The decrease in Af,,, obtained by increasing N is very small (less
than 0.01 BW). Figure 12 shows Ad,, versus complex multiplications for given values of N (the
increase in the number of multiplications for a given N is due to the increase in the value of Q).
Up to a certain point, increasing N does not dramatically increase the computational load while
permitting a better resolution. However, the curve of resolution versus calculation load quickly
flattens out, so that a very high value of N does not provide a concomitant improvement in the
resolution threshold. The bias of the estimates of signal directions varies from 1.5% to 6.5%
of Af for estimates of A, and from 2.5% to 6.5% of Af for estimates of 6,.

We now compare the results obtained for K=10 with those obtained for an array of 40
elements. Figure 13 shows Af,,, in BW versus N for DVSO-COVAR, Q=4 with K=10 and
K=40 using test case T,. The curves are quite similar even though the resolution in BW is
slightly better for a smaller array. )

Similarly, we plotted A6, versus Q for DVSO-COVAR, N=5 for arrays of 10 and 40
elements in Figure 14. The two curves lie on the top of each other.

We next analyze the effect of signal strength on the directional spectrum, F(6), using test
case T,. Figure 15 shows F(6) versus 6 for Q=1 and different values of SNR. The peaks reflect
the signal strength with an offset of 5 dB. Figure 16 shows the directional spectrum F(f) versus
6 for SNR=40 dB and for different values of Q. As Q increases, the peaks become higher.

The position error is less than 0.5% of A@ for every value of SNR and Q. Moreover, the
sharpness of the peaks increases with Q for a given SNR. Finally, the sharpness of the peaks
increases with SNR for a given Q. As for DVSO, we conclude from test cases T, and T, that
the error in the estimate of the signal directions decreases with increasing A#.
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8.0 COMPARISON OF DVSO AND DVSO-COVAR

We first compare the DVSO and DVSO-COVAR methods for test case T, on the basis
of their resolution versus computational load. Figure 17 shows Af,, versus complex
multiplications for DVSO and DVSO-COVAR with n,=23 search directions for K=10. Two
curves are shown for DVSO-COVAR: one for a fixed Q (Q=4) with N varying, the other for
fixed N (N=35) with Q varying. There are two regions of operation: for Af,, > 0.124 BW,
DVSO performs best; for Af,,, < 0.124 BW, DVSO-COVAR performs best. From Figure 17
we see that DVSO-COVAR achieves a much lower resolution threshold by varying Q for a fixed
N than by varying N for a fixed value of Q. Figure 18 shows Af,, versus the number of
complex multiplications for both techniques with n,=250. As n, increases, DVSO-COVAR
becomes slightly more efficient for low values of Af,,,. For high values of Af,,, where the value
of N is at its smallest, the advantage of DVSO is evident. It should be noted however, that
DVSO-COVAR can achieve a very high resolution - a resolution not achievable with DVSO-
albeit at the cost of a considerable computational load. = We next analyze the contribution of
the terms C, and C,, to the computational load. Figure 19 shows Af,, versus the number of
complex multiplications required for the evaluation of the basis, C,, for both techniques in the
K=10 case. As expected, the DVSO method is more computationally effective than DVSO-
COVAR for the determination of the basis. Figure 20 shows Af,, versus the number of
computations required for the evaluation of the directional 